Презентация Устойчивость и коагуляция коллоидных систем

Смотреть слайды в полном размере
Презентация Устойчивость и коагуляция коллоидных систем


Вашему вниманию предлагается презентация «Устойчивость и коагуляция коллоидных систем», с которой можно предварительно ознакомиться, просмотреть текст и слайды к ней, а так же, в случае, если она вам подходит - скачать файл для редактирования или печати.

Презентация содержит 16 слайдов и доступна для скачивания в формате ppt. Размер скачиваемого файла: 132.28 KB

Просмотреть и скачать

Pic.1
Коллоидная химия Устойчивость и коагуляция коллоидных систем
Коллоидная химия Устойчивость и коагуляция коллоидных систем
Pic.2
Устойчивость коллоидных систем Коллоидные системы характеризуются высокой раздробленностью дисперсно
Устойчивость коллоидных систем Коллоидные системы характеризуются высокой раздробленностью дисперсной фазы (дисперсностью): размер коллоидных частиц обычно составляет 10-9-10-7м. Высокая дисперсность обуславливает большую поверхность раздела фаз, которая обладает высоким поверхностным натяжением, и как следствие - большой поверхностную энергию Гиббса: ΔG=σ*S Коллоидные системы являются термодинамически неустойчивыми, и стремятся уменьшить площадь раздела фаз, за счет слипания частиц дисперсной фазы(коагуляции и коалесценции), либо за счет её осаждения (седиментации). Поэтому, под устойчивостью дисперсной системы понимают постоянство во времени ее состояния и основных свойств: дисперсности, равномерного распределения частиц дисперсной фазы в объеме дисперсионной среды и характера взаимодействия между частицами.
Pic.3
Устойчивость коллоидных систем По предложению Пескова Н. П. (1925) устойчивость дисперсных систем по
Устойчивость коллоидных систем По предложению Пескова Н. П. (1925) устойчивость дисперсных систем подразделяют на два вида: устойчивость к осаждению дисперсной фазы – седиментационная устойчивость устойчивость к агрегации её частиц - агрегативная устойчивость.
Pic.4
Седиментационная устойчивость Частицы дисперсной фазы одновременно испытывают действие силы земного
Седиментационная устойчивость Частицы дисперсной фазы одновременно испытывают действие силы земного притяжения и архимедовой силы; равнодействующая этих сил будет вынуждать частицы к оседанию либо всплытию. Процесс оседания либо всплытия коллоидных частиц в золе называется седиментацией. Седиментации всегда противодействует другой процесс, стремящийся к равномерному распределению коллоидных частиц по всему объему раствора –диффузия, осуществляемая под действием броуновского движения частиц. Соотношение между этими двумя процессами определяет кинетическую устойчивость золей.
Pic.5
Седиментационная устойчивость Коэффициент диффузии частицы вещества D зависит от вязкости (η), темпе
Седиментационная устойчивость Коэффициент диффузии частицы вещества D зависит от вязкости (η), температуры(T) и радиуса частицы(r): где k – постоянная Больцмана. Как видно из уравнения, величина коэффициента диффузии определяется отношением тепловой энергии молекул kT и вязкостного сопротивления диффузии со стороны среды. Поскольку процесс диффузии проявляется тем сильнее, чем меньше радиус коллоидных частиц, более крупные частицы оседают либо всплывают в первую очередь. Кинетическая устойчивость золя, прямо пропорциональна степени дисперсности его дисперсной фазы.
Pic.6
Кривая седиментации Так как скорость седиментации частиц зависит от их размера, то изучая процесс ос
Кривая седиментации Так как скорость седиментации частиц зависит от их размера, то изучая процесс осаждения золя можно рассчитать долю частиц различного размера в дисперсной фазе. Для этого строят кривую седиментации – зависимость массы осажденной дисперсной фазы от времени. Проводя анализ кривой седиментации, можно рассчитать кривую распределения для данной системы, которая характеризует относительное содержание в системе частиц разного размера. Обычно кривые распределения содержат один максимум, который соответствует rв – наиболее вероятному радиусу частиц дисперсной фазы.
Pic.7
Кривая седиментации и кривая распределения
Кривая седиментации и кривая распределения
Pic.8
Агрегативная устойчивость Агрегативная устойчивость дисперсных систем - это способность противостоят
Агрегативная устойчивость Агрегативная устойчивость дисперсных систем - это способность противостоять агрегации частиц. При потере агрегативной устойчивости может наблюдаться коагуляция или коалесценция. Коагуляция - процесс слипания частиц, образования более крупных агрегатов с потерей седиментационной устойчивости и последующим разделением фаз - разрушением дисперсной системы. Коалесценция - слияние капелек дисперсной фазы.
Pic.9
Агрегативная устойчивость По отношению к агрегации дисперсные системы могут быть устойчивы термодина
Агрегативная устойчивость По отношению к агрегации дисперсные системы могут быть устойчивы термодинамически и кинетически. Термодинамически устойчивые дисперсные системы называются лиофильными (греч. «любит растворение»). В лиофильных системах происходит интенсивное взаимодействие между дисперсной фазой и дисперсионной средой. В результате поверхность частиц дисперсной фазы оказывается сильно сольватированной; граница раздела фаз выражена не достаточно четко (размыта). Это приводит к существенному снижению поверхностного натяжения (в сотни раз). Поэтому лиофильные системы образуются самопроизвольно.
Pic.10
Агрегативная устойчивость Термодинамически неустойчивые дисперсные системы называются лиофобными (гр
Агрегативная устойчивость Термодинамически неустойчивые дисперсные системы называются лиофобными (греч. «боится растворения»). В них взаимодействие между дисперсной фазой и дисперсионной средой слабое, и не может в достаточной степени уменьшить величину поверхностного натяжения. Поэтому такие системы не образуются самопроизвольно. Для их существования приходится прилагать усилия (перемешивание, или стабилизировать их).
Pic.11
Агрегативная устойчивость По законам термодинамики лиофобные системы обречены на коагуляцию, но на п
Агрегативная устойчивость По законам термодинамики лиофобные системы обречены на коагуляцию, но на практике, такие системы могут существовать довольно долго (годами). Их устойчивость обуславливается кинетическими факторами. В химической кинетике протекание термодинамически разрешенной реакции может быть невозможным из-за высокого потенциального барьера – энергии активации. Аналогично, если на пути коагуляции стоит слишком большой энергетический барьер (большие силы отталкивания между частицами дисперсной фазы), то разрушения коллоидной системы не произойдет.
Pic.12
Теория устойчивости гидрофобных систем ДЛФО Потенциального барьер в лиофобных системы создается за с
Теория устойчивости гидрофобных систем ДЛФО Потенциального барьер в лиофобных системы создается за счет возникновения ДЭС на мицеллах. Образование ДЭС приводит с одной стороны к уменьшению межфазного натяжения, что повышает термодинамическую устойчивость систем, а с другой стороны, создает на пути агрегации частиц потенциальный барьер электростатического отталкивания (ионный фактор устойчивости). Согласно теории устойчивости гидрофобных коллоидов Дерягина, Ландау, Фервея, Овербека (теория ДЛФО), между частицами, имеющими ДЭС, действуют силы притяжения и силы отталкивания.
Pic.13
Теория устойчивости гидрофобных систем ДЛФО Силы отталкивания вызываются расклинивающим давлением: п
Теория устойчивости гидрофобных систем ДЛФО Силы отталкивания вызываются расклинивающим давлением: при сближении частиц происходит перекрывание диффузных частей ДЭС и концентрация противоионов между частицами становится выше, чем внутри фазы. Возникает поток дисперсионной среды в пространство между частицами, стремящийся разъединить их. Этот поток и создает расклинивающее давление. Энергия отталкивания частиц выражается уравнением: где ϕ — электрический потенциал диффузного слоя; χ - величина, обратная толщине диффузного слоя; h — расстояние между частицами; ε — диэлектрическая проницаемость дисперсионной среды; ε0— электрическая постоянная;
Pic.14
Теория устойчивости гидрофобных систем ДЛФО Силы притяжения между частицами имеют природу ван-дер-ва
Теория устойчивости гидрофобных систем ДЛФО Силы притяжения между частицами имеют природу ван-дер-ваальсовых сил, энергия притяжения выражается уравнением: А – константа Гамакера, Она учитывает природу взаимодействующих тел и выражается в единицах измерения энергии. Отсюда, разность энергий отталкивания и притягивания определяет энергию взаимодействия между частицами дисперсной фазы:Δ
Pic.15
Теория устойчивости гидрофобных систем ДЛФО График зависимости энергии отталкивания (ΔU) от расстоян
Теория устойчивости гидрофобных систем ДЛФО График зависимости энергии отталкивания (ΔU) от расстояния между частицами выглядит следующим образом: На очень малом и очень больном расстоянии ΔU<0, и частицы притягиваются, но если они находятся на расстоянии примерно 10-5 м, то они будут отталкиваться.
Pic.16
Теория устойчивости гидрофобных систем ДЛФО Ввод электролита уменьшает толщину диффузной части ДЭС,
Теория устойчивости гидрофобных систем ДЛФО Ввод электролита уменьшает толщину диффузной части ДЭС, поэтому уменьшается стабилизирующее систему отталкивание мицелл. Это приводит к запуску процесса коагуляции при достижении некоторой концентрации электролита. С1<C2<C3<C4


Скачать презентацию

Если вам понравился сайт и размещенные на нем материалы, пожалуйста, не забывайте поделиться этой страничкой в социальных сетях и с друзьями! Спасибо!