Презентация - The binomial model for option pricing

Смотреть слайды в полном размере
Презентация The binomial model for option pricing


Вашему вниманию предлагается презентация на тему «The binomial model for option pricing», с которой можно предварительно ознакомиться, просмотреть текст и слайды к ней, а так же, в случае, если она вам подходит - скачать файл для редактирования или печати.

Презентация содержит 27 слайдов и доступна для скачивания в формате ppt. Размер скачиваемого файла: 189.00 KB

Просмотреть и скачать

Pic.1
Option Pricing: The Multi Period Binomial Model Henrik Jönsson Mälardalen University Sweden
Option Pricing: The Multi Period Binomial Model Henrik Jönsson Mälardalen University Sweden
Pic.2
Contents European Call Option Geometric Brownian Motion Black-Scholes Formula Multi period Binomial
Contents European Call Option Geometric Brownian Motion Black-Scholes Formula Multi period Binomial Model GBM as a limit Black-Scholes Formula as a limit
Pic.3
European Call Option C - Option Price K - Strike price T - Expiration day Exercise only at T Payoff
European Call Option C - Option Price K - Strike price T - Expiration day Exercise only at T Payoff function, e. g.
Pic.4
Geometric Brownian Motion S(y), 0y<t, follows a geometric Brownian motion if independent of all
Geometric Brownian Motion S(y), 0y<t, follows a geometric Brownian motion if independent of all prices up to time y
Pic.5
Black-Scholes Formula The price at time zero of a European call option (non-dividend-paying stock):
Black-Scholes Formula The price at time zero of a European call option (non-dividend-paying stock): where
Pic.6
The Multi Period Binomial Model
The Multi Period Binomial Model
Pic.7
The Multi Period Binomial Model Let Let (X1, X2,…, Xn) be the vector describing the outcome after n
The Multi Period Binomial Model Let Let (X1, X2,…, Xn) be the vector describing the outcome after n steps. Find the set of probabilities P{X1=x1, X2 =x2,…, Xn =xn}, xi=0,1, i=1,…,n, such that there is no arbitrage opportunity.
Pic.8
The Multi Period Binomial Model Choose an arbitrary vector (1, 2, …, n-1) If A={X1= 1, X2= 2, …
The Multi Period Binomial Model Choose an arbitrary vector (1, 2, …, n-1) If A={X1= 1, X2= 2, …, Xn-1= n-1} is true buy one unit of stock and sell it back at moment n Probability that the stock is purchased qn-1=P{X1= 1, X2= 2, …, Xn-1= n-1} Probability that the stock goes up pn= P{Xn=1| X1= 1, …, Xn-1= n-1}
Pic.9
The Multi Period Binomial Model
The Multi Period Binomial Model
Pic.10
The Multi Period Binomial Model Expected gain = No arbitrage opportunity implies
The Multi Period Binomial Model Expected gain = No arbitrage opportunity implies
Pic.11
The Multi Period Binomial Model (1, 2, …, n-1) arbitrary vector No arbitrage opportunity 
The Multi Period Binomial Model (1, 2, …, n-1) arbitrary vector No arbitrage opportunity 
Pic.12
The Multi Period Binomial Model Limitations: Two outcomes only The same increase & decrease for
The Multi Period Binomial Model Limitations: Two outcomes only The same increase & decrease for all time periods The same probabilities
Pic.13
Geometric Brownian Motion as a Limit The Binomial process:
Geometric Brownian Motion as a Limit The Binomial process:
Pic.14
The binomial model for option pricing, слайд 14
Pic.15
GBM as a limit Let and , Y ~ Bin(n,p)
GBM as a limit Let and , Y ~ Bin(n,p)
Pic.16
GBM as a Limit The stock price after n periods where
GBM as a Limit The stock price after n periods where
Pic.17
GBM as a Limit Taylor expansion gives
GBM as a Limit Taylor expansion gives
Pic.18
GBM as a limit Expected value of W
GBM as a limit Expected value of W
Pic.19
GBM as a limit By Central Limit Theorem
GBM as a limit By Central Limit Theorem
Pic.20
GBM as a limit The multi period Binomial model becomes geometric Brownian motion when n → ∞, since a
GBM as a limit The multi period Binomial model becomes geometric Brownian motion when n → ∞, since are independent
Pic.21
B-S Formula as a limit Let , Y ~ Bin(n,p) The value of the option after n periods = where S(t)= uY d
B-S Formula as a limit Let , Y ~ Bin(n,p) The value of the option after n periods = where S(t)= uY dn-Y S(0)
Pic.22
B-S formula as a limit The unique non-arbitrage option price As n → ∞
B-S formula as a limit The unique non-arbitrage option price As n → ∞
Pic.23
B-S formula as a limit where X~N(0,1) and
B-S formula as a limit where X~N(0,1) and
Pic.24
B-S formula as a limit
B-S formula as a limit
Pic.25
B-S formula as a limit
B-S formula as a limit
Pic.26
B-S formula as a limit
B-S formula as a limit
Pic.27
B-S formula as a limit
B-S formula as a limit


Скачать презентацию

Если вам понравился сайт и размещенные на нем материалы, пожалуйста, не забывайте поделиться этой страничкой в социальных сетях и с друзьями! Спасибо!