Презентация Термины технологического прогнозирования

Смотреть слайды в полном размере
Презентация Термины технологического прогнозирования


Вашему вниманию предлагается презентация «Термины технологического прогнозирования», с которой можно предварительно ознакомиться, просмотреть текст и слайды к ней, а так же, в случае, если она вам подходит - скачать файл для редактирования или печати.

Презентация содержит 65 слайдов и доступна для скачивания в формате ppt. Размер скачиваемого файла: 8.20 MB

Просмотреть и скачать

Pic.1
Тема: Основные принципы технологического прогнозирования Основные термины технологического прогнозир
Тема: Основные принципы технологического прогнозирования Основные термины технологического прогнозирования
Pic.2
Прогноз — вероятностное утверждение о будущем с относительно высокой степенью достоверности. Прогноз
Прогноз — вероятностное утверждение о будущем с относительно высокой степенью достоверности. Прогноз — вероятностное утверждение о будущем с относительно высокой степенью достоверности. Технология — означает широкую область целенаправленного применения физических наук, наук о жизни и наук о поведении. Технологическое прогнозирование — это вероятностная оценка на относительно высоком уровне уверенности будущего перемещения технологии.
Pic.3
Перемещение технологии — процесс освоения новой техники, новых научных разработок в различных страна
Перемещение технологии — процесс освоения новой техники, новых научных разработок в различных странах. Перемещение технологии — процесс освоения новой техники, новых научных разработок в различных странах. Бурные темпы научно-технического прогресса, возрастающее влияния науки и техники на все стороны экономической и социальной жизни обуславливают закономерный интерес к проблемам прогнозирования. Процессы развития науки и техники, протекающие в прошлом на протяжении десятков и сотен лет, совершаются в наши дни неизмеримо быстрее.
Pic.4
Первым в истории нормативным прогнозом научно-технического прогресса на несколько лет был план элект
Первым в истории нормативным прогнозом научно-технического прогресса на несколько лет был план электрификации России (план ГОЭЛРО), принятый по инициативе В. И. Ленина в 1922 году. Первым в истории нормативным прогнозом научно-технического прогресса на несколько лет был план электрификации России (план ГОЭЛРО), принятый по инициативе В. И. Ленина в 1922 году. Возникновение технологического прогнозирования: в промышленности США - конец 50-х годов. в Западной Европе - 60 - е годы. Если в 1947 году прогнозированием занимались лишь около 20% крупных промышленных фирм США, то в 1966 году — 90% компаний составляли прогнозы на З и более лет.
Pic.5
Точность прогнозирования Процесс решения прогнозной задачи заключается в выполнении последовательнос
Точность прогнозирования Процесс решения прогнозной задачи заключается в выполнении последовательности арифметических, логических и других операций, направленных на преобразование исходных данных в конечный результат. Последовательность и содержание этих операций определяются выбранным методом прогнозирования и способом реализации вычислительных операций. Поэтому даже при наличии точных исходных данных решение прогнозной задачи будет приближенным в силу невозможности идеально строгой формулировки задачи для применения выбранного метода.
Pic.6
Погрешность решения прогнозной задачи Е определяется как сумма погрешностей информационных данных Еu
Погрешность решения прогнозной задачи Е определяется как сумма погрешностей информационных данных Еu, погрешности метода Еµ, погрешности вычислений Еν и нерегулярной погрешности Еλ: Погрешность решения прогнозной задачи Е определяется как сумма погрешностей информационных данных Еu, погрешности метода Еµ, погрешности вычислений Еν и нерегулярной погрешности Еλ: где Еλ— непредсказуемые события.
Pic.7
Методы изыскательного технологического прогнозирования Вероятность прогноза можно выразить графиком
Методы изыскательного технологического прогнозирования Вероятность прогноза можно выразить графиком наступления события «А», (где Р- это вероятность события А)
Pic.8
Примером изыскательного технологического прогнозирования может служить разработка автомобиля на водо
Примером изыскательного технологического прогнозирования может служить разработка автомобиля на водородном топливе, которая выполняется во многих странах мира. Примером изыскательного технологического прогнозирования может служить разработка автомобиля на водородном топливе, которая выполняется во многих странах мира. Научно-техническое прогнозирование в автомобильной промышленности, требует ответа на следующие вопросы: 1) каковы будут возможности выпускаемых отраслью машин в ближайшие 5-10-15 лет при условии сохранения объективно сложившихся тенденций развития данной отрасли (исследовательский прогноз);
Pic.9
2) каковы будут требуемые значения характеристик машин, производимых в отрасли в ближайшие 5-10-15 л
2) каковы будут требуемые значения характеристик машин, производимых в отрасли в ближайшие 5-10-15 лет, для эффективного решения задач различных групп потребителей этих машин (нормативный прогноз); 2) каковы будут требуемые значения характеристик машин, производимых в отрасли в ближайшие 5-10-15 лет, для эффективного решения задач различных групп потребителей этих машин (нормативный прогноз); 3) каков будет разрыв между возможными и потребными значениями характеристик машин в последующие 5-10-15 лет (прогноз целей научно- технического развития); 4) какие проблемы и задачи научного, технического, экономического и организационного характера необходимо решить для достижения научно- технического развития отрасли (прогноз ресурсов).
Pic.10
Смена поколений машин является конкретным отображением использования результатов фундаментальных нау
Смена поколений машин является конкретным отображением использования результатов фундаментальных наук в общественном производстве. Смена поколений машин является конкретным отображением использования результатов фундаментальных наук в общественном производстве. Эволюционное изменение характеристик машин внутри поколения можно выразить логической сигмоидальной кривой.
Pic.11
Время жизни поколения машин равно t1-t5. Время жизни поколения машин равно t1-t5. На отрезке t1 t2 п
Время жизни поколения машин равно t1-t5. Время жизни поколения машин равно t1-t5. На отрезке t1 t2 появляются первые модели машин нового поколения, хотя преобладают машины старого поколения. Период времени t1 t2 в течение которого появляются первые машины нового поколения, имеющие малый удельный вес в общем парке автомобилей отрасли, называют латентным периодом. На временном отрезке t2 t4 происходит бурное развитие машин нового поколения. Этот процесс отражается на кривой резко возрастающим участком ВD — период роста.
Pic.12
На временном отрезке t4 t5 происходит постепенный спад темпов роста параметров машин данного поколен
На временном отрезке t4 t5 происходит постепенный спад темпов роста параметров машин данного поколения: физический принцип себя исчерпал. Отрезок кривой DЕ характеризует процесс резкого замедления роста параметров. Этот период называется периодом сатурации. Именно в этот период появляются идеи применения машин нового поколения. На временном отрезке t4 t5 происходит постепенный спад темпов роста параметров машин данного поколения: физический принцип себя исчерпал. Отрезок кривой DЕ характеризует процесс резкого замедления роста параметров. Этот период называется периодом сатурации. Именно в этот период появляются идеи применения машин нового поколения. Точка С называется точкой перегиба и характеризует начальный момент от экспоненциального роста к сигмоидальной кривой.
Pic.13
Сигмоидальная кривая должна удовлетворять следующим условиям: Сигмоидальная кривая должна удовлетвор
Сигмоидальная кривая должна удовлетворять следующим условиям: Сигмоидальная кривая должна удовлетворять следующим условиям: кривая должна иметь точку перегиба; не содержать точек экстремума; должен существовать предел, к которому в бесконечности приближается кривая. Сигмоидальные кривые применяются для кратко- и среднесрочного прогнозирования роста научно-технических параметров внутри одного поколения машин отрасли.
Pic.14
Ключевые подходы к прогнозированию Кривая АС на временном участке t1 t3 при прогнозировании может бы
Ключевые подходы к прогнозированию Кривая АС на временном участке t1 t3 при прогнозировании может быть описана различными кривыми.
Pic.15
При проведении экстраполяционных расчетов исследователь должен четко представить возможные сроки про
При проведении экстраполяционных расчетов исследователь должен четко представить возможные сроки прогноза. При проведении экстраполяционных расчетов исследователь должен четко представить возможные сроки прогноза. Существует правило, по которому срок прогноза равен 1/3 исходного ряда. Пример: - если имеется ряд развития машин с 1990 по 2002 год, то по этим данным можно сделать прогноз на четыре года с 2003 по 2007 г. г.
Pic.16
Методом эвристического прогнозирования называется метод получения и специальной обработки прогнозных
Методом эвристического прогнозирования называется метод получения и специальной обработки прогнозных оценок объекта путем опроса экспертов. Методом эвристического прогнозирования называется метод получения и специальной обработки прогнозных оценок объекта путем опроса экспертов. Информационный массив прогнозирования включает в себя заполненные экспертами таблицы и анкеты. Этот метод относится к классу исследовательских и применяется для определения времени совершения события в будущем.
Pic.17
Эксперт может дать три оценки срока наступления события А: Эксперт может дать три оценки срока насту
Эксперт может дать три оценки срока наступления события А: Эксперт может дать три оценки срока наступления события А: - оптимистическая оценка; - пессимистическая оценка; - мода, наиболее вероятная оценка. Математическое ожидание события Ā и дисперсия σ определяются по формулам:
Pic.18
На основании полученных значений Ā и σ строятся модели прогнозируемого объекта для нескольких лет. Н
На основании полученных значений Ā и σ строятся модели прогнозируемого объекта для нескольких лет. На основании полученных значений Ā и σ строятся модели прогнозируемого объекта для нескольких лет.
Pic.19
Теоретические основы прогнозирования технического состояния машин Основные требования, предъявляемые
Теоретические основы прогнозирования технического состояния машин Основные требования, предъявляемые к прогнозированию технического состояния автомобилей . Целью деятельности специалиста по технической эксплуатации автомобильного транспорта является обеспечение оптимального уровня затрат на поддержание работоспособности автомобиля в заданных условиях эксплуатации.
Pic.20
Реализация этой цели возможна при наличии информации об изменении технического состояния автомобиля
Реализация этой цели возможна при наличии информации об изменении технического состояния автомобиля в прошлом, его состояния в момент прогнозирования и методики прогнозирования на будущее. Реализация этой цели возможна при наличии информации об изменении технического состояния автомобиля в прошлом, его состояния в момент прогнозирования и методики прогнозирования на будущее. Можно выделить три этапа полного прогнозирования: 1) ретроспекция; 2) диагностика; 3) прогноз.
Pic.21
Первый этап — «ретроспекция» — заключается в исследовании прогнозируемого процесса в прошлом, выявле
Первый этап — «ретроспекция» — заключается в исследовании прогнозируемого процесса в прошлом, выявлении и уточнении характеристик и структурных параметров процесса с его анализом и расчленением, установлении характера и изменений этих показателей. В результате исследований разрабатывают динамическую модель изучаемого процесса. Первый этап — «ретроспекция» — заключается в исследовании прогнозируемого процесса в прошлом, выявлении и уточнении характеристик и структурных параметров процесса с его анализом и расчленением, установлении характера и изменений этих показателей. В результате исследований разрабатывают динамическую модель изучаемого процесса. На втором этапе — «диагностика» — устанавливают начальные и допускаемые изменения характеристик параметров, проводят их измерение, а также выбирают методы прогнозирования.
Pic.22
Третий, заключительный, этап обычно включает прогноз параметров процесса в будущем. для прогнозирова
Третий, заключительный, этап обычно включает прогноз параметров процесса в будущем. для прогнозирования необходимо знать: 1) критерии отказа (износ деталей, температура деталей, образование и развитие трещин, стоимость устранения отказа); 2) методы количественного прогнозирования (функциональные закономерности); 3) методику сбора данных или измёрения значений деталей в эксплуатации; 4) основные факторы, влияющие на интенсивность изменения технического состояния автомобилей. Третий, заключительный, этап обычно включает прогноз параметров процесса в будущем. для прогнозирования необходимо знать: 1) критерии отказа (износ деталей, температура деталей, образование и развитие трещин, стоимость устранения отказа); 2) методы количественного прогнозирования (функциональные закономерности); 3) методику сбора данных или измёрения значений деталей в эксплуатации; 4) основные факторы, влияющие на интенсивность изменения технического состояния автомобилей.
Pic.23
Прогнозирование по среднестатистическому изменению параметра Этот метод позволяет предсказывать изме
Прогнозирование по среднестатистическому изменению параметра Этот метод позволяет предсказывать изменение параметра по данным среднестатистического его изменения при отсутствии информации о наработке в прошлом. Исследователь оперирует следующими данными: - текущим значением параметра объекта исследования, и (t); - номинальным значением параметра, - допускаемым значением параметра в эксплуатации, - математической моделью изменения параметра.
Pic.24
Задача состоит в том, чтобы определить остаточный ресурс объекта с известной величиной - скорости из
Задача состоит в том, чтобы определить остаточный ресурс объекта с известной величиной - скорости изменения параметра: Задача состоит в том, чтобы определить остаточный ресурс объекта с известной величиной - скорости изменения параметра: Линейная аппроксимация параметра определяется по формуле:
Pic.25
Одним из критериев работоспособности детали, элемента конструкции является несущая способность, сопр
Одним из критериев работоспособности детали, элемента конструкции является несущая способность, сопротивление хрупкому и усталостному разрушению. Одним из критериев работоспособности детали, элемента конструкции является несущая способность, сопротивление хрупкому и усталостному разрушению. Критерии работоспособности агрегата или автомобиля в целом выбирают в зависимости от конкретных условий работы. При заданных рабочих режимах интенсивность изменения технического состояния агрегата, а, следовательно и отказа, зависит от состояния среды и изменения свойств материала, неизбежного при изменении температуры на поверхности трения. За экономический критерий технического состояния автомобиля принимаются удельные затраты на поддержание работоспособности.
Pic.26
Если учитывать влияние эксплуатационных факторов на интенсивность изменения параметра (например, изн
Если учитывать влияние эксплуатационных факторов на интенсивность изменения параметра (например, изнашивания), уравнение примет степенную функцию: Если учитывать влияние эксплуатационных факторов на интенсивность изменения параметра (например, изнашивания), уравнение примет степенную функцию: В этом случае остаточный ресурс определится по формуле:
Pic.27
Пример Определите остаточный ресурс гильзопоршневой группы двигателя по количеству газов, прорывающи
Пример Определите остаточный ресурс гильзопоршневой группы двигателя по количеству газов, прорывающихся в картер на холостом ходу. Измерение параметра показало 59 л/мин. Допускаемая и номинальная величина равна 90 и 28 л/мин. Известно, что изменение количества газов, прорывающихся в картер подчиняется степенной функции Пример Определите остаточный ресурс гильзопоршневой группы двигателя по количеству газов, прорывающихся в картер на холостом ходу. Измерение параметра показало 59 л/мин. Допускаемая и номинальная величина равна 90 и 28 л/мин. Известно, что изменение количества газов, прорывающихся в картер подчиняется степенной функции с показателем степени α=1,3 при показателе приработки =1 л/мин. Время работы двигателя составило 2000 часов.
Pic.28
Решение: Решение: Из уравнения для текущего значения параметра, ч Найдём - скорость среднего статист
Решение: Решение: Из уравнения для текущего значения параметра, ч Найдём - скорость среднего статистического измерения параметра, л/ч:
Pic.29
2) Из уравнения допускаемой величины параметра 2) Из уравнения допускаемой величины параметра Найдём
2) Из уравнения допускаемой величины параметра 2) Из уравнения допускаемой величины параметра Найдём , ч: Ответ: Ожидаемый оставляет остаточный ресурс составляет 2087 часов.
Pic.30
Прогнозирование по реализации изменения параметра При прогнозировании по реализации считают, что изм
Прогнозирование по реализации изменения параметра При прогнозировании по реализации считают, что изменение параметра элемента характеризуется экстраполяционной функцией, которая определяется по изменению параметра в прошлом.
Pic.31
Функции могут выражаться: Функции могут выражаться:
Функции могут выражаться: Функции могут выражаться:
Pic.32
При решении задачи расчета ресурса исследователь должен иметь: При решении задачи расчета ресурса ис
При решении задачи расчета ресурса исследователь должен иметь: При решении задачи расчета ресурса исследователь должен иметь: - результаты измерения параметра; - допускаемую величину параметра в эксплуатации; - наработку объекта на период измерения параметра объекта исследования.
Pic.33
Планирование и проведение многофакторного эксперимента Основой прогнозирования является знание проце
Планирование и проведение многофакторного эксперимента Основой прогнозирования является знание процессов, закономерности их развития. Многофакторный эксперимент позволяет проводить активный эксперимент с факторами, влияющими на техническое состояние узла, агрегата или в целом автомобиля. Полученные результаты эксперимента описывают уравнением, которое называется математической моделью.
Pic.34
Планирование эксперимента — это процедура выбора числа и условий проведения опытов, необходимых и до
Планирование эксперимента — это процедура выбора числа и условий проведения опытов, необходимых и достаточных для решения поставленной задачи с требуемой точностью. При этом экспериментатор должен: - провести минимум опытов; - одновременно варьировать всеми переменными, определяющими процесс, по специальным правилам- алгоритмам; - использовать математический аппарат; - выбрать четкую стратегию проведения эксперимента. Планирование эксперимента — это процедура выбора числа и условий проведения опытов, необходимых и достаточных для решения поставленной задачи с требуемой точностью. При этом экспериментатор должен: - провести минимум опытов; - одновременно варьировать всеми переменными, определяющими процесс, по специальным правилам- алгоритмам; - использовать математический аппарат; - выбрать четкую стратегию проведения эксперимента.
Pic.35
Классический эксперимент - представляет собой последовательность однофакторных экспериментов, при ко
Классический эксперимент - представляет собой последовательность однофакторных экспериментов, при которых все независимые переменные, кроме одной, принимаются постоянными. В таких экспериментах невозможно определить характер взаимодействия факторов между собой. Классический эксперимент - представляет собой последовательность однофакторных экспериментов, при которых все независимые переменные, кроме одной, принимаются постоянными. В таких экспериментах невозможно определить характер взаимодействия факторов между собой.
Pic.36
Факторы и параметры оптимизации в планировании многофакторного эксперимента Многофакторное планирова
Факторы и параметры оптимизации в планировании многофакторного эксперимента Многофакторное планирование позволяет получить математическую модель процесса, в котором задействованы одновременно все факторы. Содержание планирования проиллюстрируем исследованием “черного ящика”. Например, пусть объектом исследования является износ деталей.
Pic.37
Входными величинами в черный ящик будут: р - давление удельное; V - скорость относительных перемещен
Входными величинами в черный ящик будут: р - давление удельное; V - скорость относительных перемещений деталей; S - зазор между деталями; τ - время работы; F - площадь контакта; Т - температура.
Pic.38
Выходными величинами будут: γ - скорость изнашивания; Выходными величинами будут: γ - скорость изнаш
Выходными величинами будут: γ - скорость изнашивания; Выходными величинами будут: γ - скорость изнашивания; А - работа ударной нагрузки в сопряжении; И - величина износа детали. Переменные х1, х2 ,. . . хn - называются факторами. Выходные величины y1,y2,…yn - называются откликом или параметром оптимизации. Каждый фактор может принимать в опыте одно из нескольких значений. Такие значения будем называть уровнями.
Pic.39
Обозначим число факторов через - k, а число уровней - через р. Обозначим число факторов через - k, а
Обозначим число факторов через - k, а число уровней - через р. Обозначим число факторов через - k, а число уровней - через р. Чтобы узнать число состояний выходных параметров оптимизации следует возвести число уровней р в степень числа факторов k В нашем примере число факторов k=6. Пусть факторы имеют по пять уровней, тогда число состояний выходных параметров составит:
Pic.40
В этих условиях следует отказаться от опытов, так как объем данных слишком велик. Следует поставить
В этих условиях следует отказаться от опытов, так как объем данных слишком велик. Следует поставить вопрос: сколько и каких опытов необходимо включать в эксперимент? При планировании эксперимента принято устанавливать два уровня для каждого фактора, тогда состояние выходного параметра будет принимать например, при k=6 В этих условиях следует отказаться от опытов, так как объем данных слишком велик. Следует поставить вопрос: сколько и каких опытов необходимо включать в эксперимент? При планировании эксперимента принято устанавливать два уровня для каждого фактора, тогда состояние выходного параметра будет принимать например, при k=6
Pic.41
Например, при исследовании износа детали U=f(p, V, S, τ, F, T) возможны следующие значения факторов:
Например, при исследовании износа детали U=f(p, V, S, τ, F, T) возможны следующие значения факторов: Например, при исследовании износа детали U=f(p, V, S, τ, F, T) возможны следующие значения факторов: Нижний уровень обозначают (-) Верхний уровень обозначают (+)
Pic.42
Параметр оптимизации - это признак, по которому мы должны оптимизировать процесс (выходной параметр)
Параметр оптимизации - это признак, по которому мы должны оптимизировать процесс (выходной параметр). Параметр оптимизации - это признак, по которому мы должны оптимизировать процесс (выходной параметр). Параметр оптимизации должен быть: - эффективным, как показатель; - универсальными (то есть отражать состояние исследуемого процесса); - количественным и выражаться одним числом; - иметь физический смысл, быть простым и вычисляемым; - существующим для всех различных состояний факторов.
Pic.43
К факторам предъявляют следующие требования: К факторам предъявляют следующие требования: 1) Управля
К факторам предъявляют следующие требования: К факторам предъявляют следующие требования: 1) Управляемость. 2) Непосредственное влияние на объект исследования. З) Сочетание факторов не должно приводить к остановке эксперимента.
Pic.44
Математическое описание процесса изменения выходного параметра (выбор модели) Под моделью мы понимае
Математическое описание процесса изменения выходного параметра (выбор модели) Под моделью мы понимаем вид функции отклика: y=f (x1,x2,…. . xn) Математическая модель позволяет предсказать дальнейший результат опыта. Обычно для математической модели выбирают полином: y=B0+B1X1+B2X2+…. . +BnXn Если неизвестную функцию заменяем полиномом, то эта операция называется апроксамацией
Pic.45
Полный факторный эксперимент. Для проведения эксперимента необходимо установить уровни факторов. Их
Полный факторный эксперимент. Для проведения эксперимента необходимо установить уровни факторов. Их устанавливают по результатам аналогичных опытов. Основной - нулевой уровень находится между min(-) и max(+) значениями. Интервал J между min и max должен быть одинаковым. Например, при исследовании износа детали U=f (p, V, S, τ, F, T) приняты следующие значения;
Pic.46
Термины технологического прогнозирования, слайд 46
Pic.47
Интервалы выбирают из условий работы агрегата. Интервалы выбирают из условий работы агрегата. Уровни
Интервалы выбирают из условий работы агрегата. Интервалы выбирают из условий работы агрегата. Уровни факторов имеют численные значения при составлении уравнения и рассчитываются по формуле: Пример: ; , где X1Н – нижний уровень, X1В – верхний уровень, , , - реальные физические значения.
Pic.48
Величина интервала влияет на результат исследования, так как при постановке эксперимента можно “прос
Величина интервала влияет на результат исследования, так как при постановке эксперимента можно “проскочить” оптимум. Поэтому как выбор основного уровня, так и ширина интервала влияет на результаты эксперимента. Величина интервала влияет на результат исследования, так как при постановке эксперимента можно “проскочить” оптимум. Поэтому как выбор основного уровня, так и ширина интервала влияет на результаты эксперимента. В общем случае эксперимент, в котором реализуются все возможные сочетания уровней факторов, называется полным факторным экспериментом.
Pic.49
Условия эксперимента можно записать в виде таблицы, где строки соответствуют различным опытам, а сто
Условия эксперимента можно записать в виде таблицы, где строки соответствуют различным опытам, а столбцы - значениям факторов. Такие таблицы называются - матрицами. Матрица планирования эксперимента (полный факторный эксперимент) Условия эксперимента можно записать в виде таблицы, где строки соответствуют различным опытам, а столбцы - значениям факторов. Такие таблицы называются - матрицами. Матрица планирования эксперимента (полный факторный эксперимент)
Pic.50
Матрица планирования (полный факторный эксперимент) Матрица планирования (полный факторный экспериме
Матрица планирования (полный факторный эксперимент) Матрица планирования (полный факторный эксперимент)
Pic.51
Произведения факторов х1 х2 х3 показывают их взаимодействие и называются определяющим контрастом. Пр
Произведения факторов х1 х2 х3 показывают их взаимодействие и называются определяющим контрастом. Произведения факторов х1 х2 х3 показывают их взаимодействие и называются определяющим контрастом. В матрице планирования эксперимента знаки (—) и (+) обозначают два уровня факторов: нижний и вёрхний. Полный факторный эксперимент обладает избыточностью информации. Поэтому экспериментатор может исключить несущественные результаты эксперимента и сократить число опытов.
Pic.52
Пример: Пример: для оценки влияния трёх факторов на параметр оптимизации можно воспользоваться полов
Пример: Пример: для оценки влияния трёх факторов на параметр оптимизации можно воспользоваться половиной полного факторного эксперимента , используя опыты с первого по четвертый, или с пятого по восьмой. Эти половины матрицы называются полурепликой. Полуреплики отличаются между собой знаком в произведении факторов по опытам. Для опытов с первого по четвертый это произведение х1 х2 х3= +1, а с пятого по восьмой опыты х1 х2 х3= -1. Каждая из полуреплик представляет дробный факторный эксперимент.
Pic.53
Пример: полуреплика с первого по четвёртый опыт: Пример: полуреплика с первого по четвёртый опыт: По
Пример: полуреплика с первого по четвёртый опыт: Пример: полуреплика с первого по четвёртый опыт: Полуреплика обозначается условно в виде
Pic.54
Объединение двух полуреплик в одной матрице представляет полный факторный эксперимент. Объединение д
Объединение двух полуреплик в одной матрице представляет полный факторный эксперимент. Объединение двух полуреплик в одной матрице представляет полный факторный эксперимент. При постановке эксперимента могут быть примеры от ½ до 1/16 реплик.
Pic.55
При построении полуреплики существует всего две возможности приравнять х3: х3= +х1х2 или х3= -х1х2 п
При построении полуреплики существует всего две возможности приравнять х3: х3= +х1х2 или х3= -х1х2 поэтому есть только две полуреплики. Соотношения х3= +х1х2, х3= -х1х2 называются генерирующими соотношениями. Произведение трех факторов для полуреплик могут иметь два значения: 1) х1х2х3=+1 или 2) х1х2х3=-1 Символическое обозначение произведения всех факторов, равного (+1) или (-1), называется определяющим контрастом. При построении полуреплики существует всего две возможности приравнять х3: х3= +х1х2 или х3= -х1х2 поэтому есть только две полуреплики. Соотношения х3= +х1х2, х3= -х1х2 называются генерирующими соотношениями. Произведение трех факторов для полуреплик могут иметь два значения: 1) х1х2х3=+1 или 2) х1х2х3=-1 Символическое обозначение произведения всех факторов, равного (+1) или (-1), называется определяющим контрастом.
Pic.56
При выборе полуреплик возможно восемь решений: При выборе полуреплик возможно восемь решений: x4=x1x
При выборе полуреплик возможно восемь решений: При выборе полуреплик возможно восемь решений: x4=x1x2 3) x4=x2x3 5) x4=x1x3 7) x4=x1x2x3 x4=-x1x2 4) x4=-x2x3 6) x4=-x1x3 8) x4=-x1x2x3 Разрешающая способность этих полуреплик различна. Реплики 1-6 имеют по три фактора в определяющем контрасте, а 7-8 по четыре. Реплики 7-8 имеют максимальную разрешающую способность и называются главными. Определяющий контраст находится для главной реплики, умножением правой и левой частей на х4: x4x4=x1x2x3x4 1=x1x2x3x4 x4x4=-x1x2x3x4 1=-x1x2x3x4
Pic.57
Разумен выбор главной полуреплики, если имеется достоверная информация о большей значимости тройных
Разумен выбор главной полуреплики, если имеется достоверная информация о большей значимости тройных взаимодействий по сравнению с парными или о незначимости парных взаимодействий. Разумен выбор главной полуреплики, если имеется достоверная информация о большей значимости тройных взаимодействий по сравнению с парными или о незначимости парных взаимодействий. При выборе полуреплики для пяти факторов возможны 22 варианта (16 опытов). Реплики x5=x1x2x3x4 и x5=-x1x2x3x4 имеют наибольшую разрешающую способность.
Pic.58
Рассмотрим пример построения матрицы планирования эксперимента. Допустим, что выбран вариант 5 с ген
Рассмотрим пример построения матрицы планирования эксперимента. Допустим, что выбран вариант 5 с генерирующими соотношениями: x4=x1x3 и x5=х1х2х3, а определяющие контрасты равны: Рассмотрим пример построения матрицы планирования эксперимента. Допустим, что выбран вариант 5 с генерирующими соотношениями: x4=x1x3 и x5=х1х2х3, а определяющие контрасты равны: 1=х4х1х3 1 =х5х1х2х3. Пример построения матрицы дробного факторного эксперимента
Pic.59
Термины технологического прогнозирования, слайд 59
Pic.60
Графу х1 заполняем произвольно по свойству симметрии. Графы х2 и х3 заполняем подбором знаков плюс и
Графу х1 заполняем произвольно по свойству симметрии. Графы х2 и х3 заполняем подбором знаков плюс и минус по свойствам симметрии и ортогональности матрицы. Графу x4 заполняем по генерирующему соотношению: х4 = х1х3. В графе x5 знаки фактора подсчитываем по генерирующему соотношению: х5 = х1х2х3. Графу х1 заполняем произвольно по свойству симметрии. Графы х2 и х3 заполняем подбором знаков плюс и минус по свойствам симметрии и ортогональности матрицы. Графу x4 заполняем по генерирующему соотношению: х4 = х1х3. В графе x5 знаки фактора подсчитываем по генерирующему соотношению: х5 = х1х2х3. Матрицы являются табличным планом проведения эксперимента. По результатам опытных данных получают уравнение, которое называется математической моделью.
Pic.61
Пусть, например, проведен эксперимент по полуреплике с генерирующим соотношением х3 = х1х2, то есть
Пусть, например, проведен эксперимент по полуреплике с генерирующим соотношением х3 = х1х2, то есть с определяющим контрастом х1х2х3=1, и получены значения параметров оптимизации у. Пусть, например, проведен эксперимент по полуреплике с генерирующим соотношением х3 = х1х2, то есть с определяющим контрастом х1х2х3=1, и получены значения параметров оптимизации у.
Pic.62
Уравнение регрессии будем искать в виде: Уравнение регрессии будем искать в виде: y=в0+в1x1+в2x2+в3x
Уравнение регрессии будем искать в виде: Уравнение регрессии будем искать в виде: y=в0+в1x1+в2x2+в3x3 Коэффициент в0 определяется по формуле: где N- число опытов; yi –значение параметра оптимизации в эксперименте по опытам.
Pic.63
Коэффициенты уравнения в1,в2,в3 определяются по формуле: Коэффициенты уравнения в1,в2,в3 определяютс
Коэффициенты уравнения в1,в2,в3 определяются по формуле: Коэффициенты уравнения в1,в2,в3 определяются по формуле: где j- знаки факторов, j=(+),(-); i- номер опыта , i=1…N
Pic.64
Подставим в уравнение регрессии полученные значения факторов и получим математическую модель: Подста
Подставим в уравнение регрессии полученные значения факторов и получим математическую модель: Подставим в уравнение регрессии полученные значения факторов и получим математическую модель: y=9+3x1+2x2+1x3 Проверим точность полученной математической модели. Подставим в кодовых обозначениях значения факторов. y1=9+3(-1)+2(-1)+1(+1)=5 y2=9+3(-1)+2(+1)+1(-1)=7 y3=9+3(+1)+2(-1)+1(-1)=9 y4=9+3(+1)+2(+1)+1(+1)=15
Pic.65
Полученные расчётные значения по математической модели соответствуют экспериментальным данным. Получ
Полученные расчётные значения по математической модели соответствуют экспериментальным данным. Полученные расчётные значения по математической модели соответствуют экспериментальным данным. Такие математические модели называются адекватными.


Скачать презентацию

Если вам понравился сайт и размещенные на нем материалы, пожалуйста, не забывайте поделиться этой страничкой в социальных сетях и с друзьями! Спасибо!