Презентация - Телевидение и развитие средств связи

Смотреть слайды в полном размере
Презентация Телевидение и развитие средств связи


Вашему вниманию предлагается презентация на тему «Телевидение и развитие средств связи», с которой можно предварительно ознакомиться, просмотреть текст и слайды к ней, а так же, в случае, если она вам подходит - скачать файл для редактирования или печати.

Презентация содержит 19 слайдов и доступна для скачивания в формате ppt. Размер скачиваемого файла: 2.06 MB

Просмотреть и скачать

Pic.1
Телевидение и развитие средств связи
Телевидение и развитие средств связи
Pic.2
Телевидение Радиоволны можно использоваться не только для передачи звука, но и для передачи изображе
Телевидение Радиоволны можно использоваться не только для передачи звука, но и для передачи изображения.
Pic.3
Передача изображения Для передачи изображения, его сначала надо преобразовать в электрические сигнал
Передача изображения Для передачи изображения, его сначала надо преобразовать в электрические сигналы. На станции с которой передается сигнал, его преобразуют в последовательность электрических импульсов. Потом данными сигналами модулируются колебания высокой частоты.
Pic.4
Телевидение и его развитие Развитие средств связи осуществляется полным ходом. Еще 20 лет назад не в
Телевидение и его развитие Развитие средств связи осуществляется полным ходом. Еще 20 лет назад не в каждой квартире можно было встретить домашний проводной телефон. А сейчас уже никого не удивишь наличием мобильного телефона у ребенка. Об спутниковом телевидении можно и не упоминать.
Pic.5
Иконоскоп Для преобразования изображения в электрический сигнал используют прибор, называемый иконос
Иконоскоп Для преобразования изображения в электрический сигнал используют прибор, называемый иконоскоп. Иконоскоп не является единственным способом преобразования изображения в поток электрических импульсов.
Pic.6
Этапы развития средств связи Английский ученый Джеймс Максвелл в 1864 году теоретически предсказал с
Этапы развития средств связи Английский ученый Джеймс Максвелл в 1864 году теоретически предсказал существование электромагнитных волн. 1887 году экспериментально в Берлинском университете обнаружил Генрих Герц. 7 мая 1895 году А. С. Попов изобрел радио. В 1901 году итальянский инженер Г. Маркони впервые осуществил радиосвязь через Атлантический океан. Б. Л. Розинг 9 мая 1911 года электронное телевидение. 30 годы В. К. Зворыкин изобрел первую передающую трубку –иконоскоп.
Pic.7
Современные направления развития средств связи Радиосвязь Телефонная связь Телевизионная связь Сотов
Современные направления развития средств связи Радиосвязь Телефонная связь Телевизионная связь Сотовая связь Интернет Космическая связь Фототелеграф (Факс) Видеотелефонная связь Телеграфная связь
Pic.8
Радиосвязь – передача и прием информации с помощью радиоволн, распространяющихся в пространстве без
Радиосвязь – передача и прием информации с помощью радиоволн, распространяющихся в пространстве без проводов.
Pic.9
Виды радиосвязи. Радиотелеграфная Радиотелефонная Радиовещание Телевидение.
Виды радиосвязи. Радиотелеграфная Радиотелефонная Радиовещание Телевидение.
Pic.10
Космическая связь КОСМИЧЕСКАЯ СВЯЗЬ, радиосвязь или оптическая (лазерная) связь, осуществляемая межд
Космическая связь КОСМИЧЕСКАЯ СВЯЗЬ, радиосвязь или оптическая (лазерная) связь, осуществляемая между наземными приемно-передающими станциями и космическими аппаратами, между несколькими наземными станциями через спутники связи, между несколькими космическими аппаратами.
Pic.11
Фототелеграф Фототелеграф, общепринятое сокращённое название факсимильной связи (фототелеграфной свя
Фототелеграф Фототелеграф, общепринятое сокращённое название факсимильной связи (фототелеграфной связи). Вид связи для передачи и приема нанесенных на бумагу изображений (рукописей, таблиц, чертежей, рисунков и т. п. ). Устройство, осуществляющее такую связь.
Pic.12
Первый фототелеграф В начале века немецким физиком Корном был создан фототелеграф, который ничем при
Первый фототелеграф В начале века немецким физиком Корном был создан фототелеграф, который ничем принципиально не отличается от современных барабанных сканеров. (На рисунке справа приведена схема телеграфа Корна и портрет изобретателя, отсканированный и переданный на расстояние более 1000 км 6 ноября 1906 года).
Pic.13
Шелфорд Бидвелл (Shelford Bidwell), британский физик, изобрел «сканирующий фототелеграф». Для переда
Шелфорд Бидвелл (Shelford Bidwell), британский физик, изобрел «сканирующий фототелеграф». Для передачи изображений (диаграмм, карт и фотографий) в системе использовался материал селен и электрические сигналы. Шелфорд Бидвелл (Shelford Bidwell), британский физик, изобрел «сканирующий фототелеграф». Для передачи изображений (диаграмм, карт и фотографий) в системе использовался материал селен и электрические сигналы.
Pic.14
Видеотелефонная связь Персональная видеотелефонная связь на UMTS-оборудовании Новейшие модели телефо
Видеотелефонная связь Персональная видеотелефонная связь на UMTS-оборудовании Новейшие модели телефонных аппаратов имеют привлекательный дизайн, богатый выбор аксессуаров, широкую функциональность, поддерживают технологии Bluetooth и wideband-ready-аудио, а также XML-интеграцию с любыми корпоративными приложениями
Pic.15
Виды линии передачи сигналов Двухпроводная линия Электрический кабель Метрический волновод Диэлектри
Виды линии передачи сигналов Двухпроводная линия Электрический кабель Метрический волновод Диэлектрический волновод Радиорелейная линия Лучеводная линия Волоконно–оптическая линия Лазерная связь
Pic.16
Волоконно-оптические линии связи Волоконно-оптические линии связи (ВОЛС) в настоящее время считаются
Волоконно-оптические линии связи Волоконно-оптические линии связи (ВОЛС) в настоящее время считаются самой совершенной физической средой для передачи информации. Передача данных в оптическом волокне основана на эффекте полного внутреннего отражения. Таким образом оптический сигнал, передаваемый лазером с одной стороны, принимается с другой, значительно удаленной стороной. На сегодняшний день построено и строится огромное количество магистральных оптоволоконных колец, внутригородских и даже внутриофисных. И это количество будет постоянно расти.
Pic.17
В ВОЛС применяют электромагнитные волны оптического диапазона. Напомним, что видимое оптическое излу
В ВОЛС применяют электромагнитные волны оптического диапазона. Напомним, что видимое оптическое излучение лежит в диапазоне длин волн 380. . . 760 нм. Практическое применение в ВОЛС получил инфракрасный диапазон, т. е. излучение с длиной волны более 760 нм. В ВОЛС применяют электромагнитные волны оптического диапазона. Напомним, что видимое оптическое излучение лежит в диапазоне длин волн 380. . . 760 нм. Практическое применение в ВОЛС получил инфракрасный диапазон, т. е. излучение с длиной волны более 760 нм. Принцип распространения оптического излучения вдоль оптического волокна (ОВ) основан на отражении от границы сред с разными показателями преломления (Рис. 5. 7). Оптическое волокно изготавливается из кварцевого стекла в виде цилиндров с совмещенными осями и различными коэффициентами преломления. Внутренний цилиндр называется сердцевиной ОВ, а внешний слой - оболочкой ОВ.
Pic.18
Лазерная система связи Довольно любопытное решение для качественной и быстрой сетевой связи разработ
Лазерная система связи Довольно любопытное решение для качественной и быстрой сетевой связи разработала немецкая компания Laser2000. Две представленные модели на вид напоминают самые обычные видеокамеры и предназначены для связи между офисами, внутри офисов и по коридорам. Проще говоря, вместо того, чтобы прокладывать оптический кабель, надо всего лишь установить изобретения от Laser2000. Однако, на самом-то деле, это не видеокамеры, а два передатчика, которые осуществляют между собой связь посредством лазерного излучения. Напомним, что лазер, в отличие от обычного света, например, лампового, характеризуется монохроматичностью и когерентностью, то есть лучи лазера всегда обладают одной и той же длиной волны и мало рассеиваются.
Pic.19
Впервые осуществлена лазерная связь между спутником и самолетом 25. 12. 06, Пн, 00:28, Мск Французск
Впервые осуществлена лазерная связь между спутником и самолетом 25. 12. 06, Пн, 00:28, Мск Французская компания Astrium впервые в мире продемонстрировала успешную связь по лазерному лучу между спутником и самолетом. В ходе испытаний лазерной системы связи, прошедших в начале декабря 2006 года, связь на расстоянии почти 40 тыс. км была осуществлена дважды - один раз самолет Mystere 20 находился на высоте 6 тыс. м, в другой раз высота полета составила 10 тыс. м. Скорость самолета составляла около 500 км/ч, скорость передачи данных по лазерному лучу - 50 Мб/с. Данные передавались на геостационарный телекоммуникационный спутник Artemis.


Скачать презентацию

Если вам понравился сайт и размещенные на нем материалы, пожалуйста, не забывайте поделиться этой страничкой в социальных сетях и с друзьями! Спасибо!