Презентация «Reinforcement learning of fuzzy logic controllers»

Смотреть слайды в полном размере
Презентация «Reinforcement learning of fuzzy logic controllers»

Вы можете ознакомиться с презентацией онлайн, просмотреть текст и слайды к ней, а также, в случае, если она вам подходит - скачать файл для редактирования или печати. Документ содержит 16 слайдов и доступен в формате ppt. Размер файла: 322.87 KB

Просмотреть и скачать

Pic.1
Reinforcement learning of fuzzy logic controllers Nursadyk D.
Reinforcement learning of fuzzy logic controllers Nursadyk D.
Pic.2
What is fuzzy logic?
What is fuzzy logic?
Pic.3
Fuzzy Logic Simple example of the logic for temperature regulator that uses a fan might look like th
Fuzzy Logic Simple example of the logic for temperature regulator that uses a fan might look like this:
Pic.4
«Reinforcement learning of fuzzy logic controllers», слайд 4
Pic.5
«Reinforcement learning of fuzzy logic controllers», слайд 5
Pic.6
«Reinforcement learning of fuzzy logic controllers», слайд 6
Pic.7
«Reinforcement learning of fuzzy logic controllers», слайд 7
Pic.8
«Reinforcement learning of fuzzy logic controllers», слайд 8
Pic.9
«Reinforcement learning of fuzzy logic controllers», слайд 9
Pic.10
There are three types of scheme: FLC – Fuzzy Logic Controllers NN – Neural Networks RL – Reinforceme
There are three types of scheme: FLC – Fuzzy Logic Controllers NN – Neural Networks RL – Reinforcement Learning
Pic.11
FLC For Sony legged robots, the output action is the discrete command set, each of which can make th
FLC For Sony legged robots, the output action is the discrete command set, each of which can make the robot move single steps in different directions.
Pic.12
«Reinforcement learning of fuzzy logic controllers», слайд 12
Pic.13
The input state vector is S = [s1, s2]T = [θ, d]T. This behavior is to control the robot to approach
The input state vector is S = [s1, s2]T = [θ, d]T. This behavior is to control the robot to approach the ball by taking action such as MOVE FORWARD, LFFT FORWARD, RIGHT FORWARD, LEFT TURN, or RIGHT …
Pic.14
«Reinforcement learning of fuzzy logic controllers», слайд 14
Pic.15
Experimental results The experimental results show the FLC can be learned by the proposed reinforcem
Experimental results The experimental results show the FLC can be learned by the proposed reinforcement learning scheme.
Pic.16
Thank you for attention! Thank you for attention!
Thank you for attention! Thank you for attention!


Скачать презентацию

Если вам понравился сайт и размещенные на нем материалы, пожалуйста, не забывайте поделиться этой страничкой в социальных сетях и с друзьями! Спасибо!