Презентация Путешествие на планету Математика

Смотреть слайды в полном размере
Презентация Путешествие на планету Математика


Вашему вниманию предлагается презентация «Путешествие на планету Математика», с которой можно предварительно ознакомиться, просмотреть текст и слайды к ней, а так же, в случае, если она вам подходит - скачать файл для редактирования или печати.

Презентация содержит 22 слайда и доступна для скачивания в формате pptx. Размер скачиваемого файла: 583.18 KB

Просмотреть и скачать

Pic.1
«Действия с рациональными числами » (6 класс)
«Действия с рациональными числами » (6 класс)
Pic.2
Чтобы спорилось нужное дело, Чтобы спорилось нужное дело, Чтобы в жизни не знать неудач, Мы в поход
Чтобы спорилось нужное дело, Чтобы спорилось нужное дело, Чтобы в жизни не знать неудач, Мы в поход отправляемся смело В мир загадок и сложных задач. Не беда, что идти далеко. Не боимся, что путь будет труден. Достижения крупные людям Никогда не давались легко. В наше время, чтобы строить И машиной управлять, Прежде нужно уже в школе Математику узнать. На войне ли современной, В годы ль мирного труда, При расчетах непременно Математика нужна.
Pic.3
Путешествие на планету Математика, слайд 3
Pic.4
Проверяем блок памяти: Проверьте 1) - 3,23 - 8 = 11, 23 2) 48 : (-5) = 9,6 3) 24,23 – (- 2,2) = 22,0
Проверяем блок памяти: Проверьте 1) - 3,23 - 8 = 11, 23 2) 48 : (-5) = 9,6 3) 24,23 – (- 2,2) = 22,03 4) - 25 * ( -8) = 250 5) -4, 5 + 9, 4 = - 4,9 6) -11,9 – 1,2 = - 12,1 7) – 10 * (- 18) = - 18
Pic.5
ВЫЧИСЛИТЕ: 1) – 5, 8 - 4, 2 2) - 19,6 + 2,5 3) – 24 : (-5) 4) 18 * (- 3)
ВЫЧИСЛИТЕ: 1) – 5, 8 - 4, 2 2) - 19,6 + 2,5 3) – 24 : (-5) 4) 18 * (- 3)
Pic.6
Проконтролируйте работу компьютера: а) 8 – 70 б) – 19 + 100 в) – 18 - 46 -19 : (-3) : 16 : 3 - 13 -
Проконтролируйте работу компьютера: а) 8 – 70 б) – 19 + 100 в) – 18 - 46 -19 : (-3) : 16 : 3 - 13 - 77 * (-2) + 6 : (-3)
Pic.7
Путешествие на планету Математика, слайд 7
Pic.8
Путешествие на планету Математика, слайд 8
Pic.9
Путешествие на планету Математика, слайд 9
Pic.10
1) Как умножить два числа с разными знаками. 1) Как умножить два числа с разными знаками. 2) Как сло
1) Как умножить два числа с разными знаками. 1) Как умножить два числа с разными знаками. 2) Как сложить два отрицательных числа. 3) Как разделить два отрицательных числа. 4) По какому правилу выполняется вычитание чисел. 5) Как сложить два числа с разными знаками. 6) Какие числа называют противоположными.
Pic.11
Путешествие на планету Математика, слайд 11
Pic.12
С рациональными числами люди знакомились постепенно, вна­чале при счете предметов возникли натуральн
С рациональными числами люди знакомились постепенно, вна­чале при счете предметов возникли натуральные числа. На первых порах их было немного. Так, еще недавно у туземцев островов в Торресовом проливе (отделяю­щем Новую Гвинею от Австралии) были в языке названия только двух чисел: «урапун» (один) и «оказа» (два). Островитяне считали так: «оказа - урапун» (три), «оказа - оказа» (четыре) и т. д. Все числа, начиная с семи, туземцы называли словом, обозначавшим «много». С рациональными числами люди знакомились постепенно, вна­чале при счете предметов возникли натуральные числа. На первых порах их было немного. Так, еще недавно у туземцев островов в Торресовом проливе (отделяю­щем Новую Гвинею от Австралии) были в языке названия только двух чисел: «урапун» (один) и «оказа» (два). Островитяне считали так: «оказа - урапун» (три), «оказа - оказа» (четыре) и т. д. Все числа, начиная с семи, туземцы называли словом, обозначавшим «много». Величайший древнегреческий математик и физик Архимед (287—212 до н. э. ) придумал способ описания гро­мадных чисел. Самое большое число, которое умел назы­вать Архимед, было настолько велико, что для его цифро­вой записи понадобилась бы лента в две тысячи раз длин­нее, чем расстояние от Земли до Солнца. При разделе добычи и в дальнейшем при измерениях величин, да и в других похожих случаях люди встретились с необходимостью ввести «ломаные числа» — обыкновенные дроби. Действия над дробями еще в средние века считались самой сложной областью математики. До сих пор немцы говорят про человека, попавшего в затруднительное положение, что он «попал в дроби». Отрицательные числа появились позднее, чем дроби. Долгое время такие числа считали «несуществующими», «ложными» прежде всего из-за того, что принятое истолкование для положительных и отрицательных чисел «имущество — долг» приводило к недоумениям: можно сложить или вычесть «имущества» или «долги», но как понимать произведение или частное «имущества» и «долга»?
Pic.13
Однако, несмотря на такие сомнения и недоумения, правила умножения и деления положительных и отрицат
Однако, несмотря на такие сомнения и недоумения, правила умножения и деления положительных и отрицательных чисел были предложены в III в. греческим матема­тиком Диофантом (в виде: «Вычитаемое, умноженное на прибавляемое, дает вычи­таемое; вычитаемое на вычитаемое дает прибавляемое» и т. д. ), а позже индийский математик Бхаскара (XII в. ) выразил те же правила в понятиях «имущество», «долг» («Произведение двух имуществ или двух долгов есть имущество; произведение иму­щества и долга есть долг». То же правило и при делении). Однако, несмотря на такие сомнения и недоумения, правила умножения и деления положительных и отрицательных чисел были предложены в III в. греческим матема­тиком Диофантом (в виде: «Вычитаемое, умноженное на прибавляемое, дает вычи­таемое; вычитаемое на вычитаемое дает прибавляемое» и т. д. ), а позже индийский математик Бхаскара (XII в. ) выразил те же правила в понятиях «имущество», «долг» («Произведение двух имуществ или двух долгов есть имущество; произведение иму­щества и долга есть долг». То же правило и при делении). Было установлено, что свойства действий над отрицательными числами те же, что и над положительными (например, сложение и умножение обладают переместительным свойством). И наконец, с начала XIX в. отрицательные числа стали равноправными с положительными. В дальнейшем в математике появились новые числа — иррациональные, комплексные и другие. О них вы узнаете в старших классах.
Pic.14
Путешествие на планету Математика, слайд 14
Pic.15
Вычислите: 1) – 13 – 15 + 9 - 17 2) 20 – 14 – 13 + 7 3) ( -2) * ( -24,3) * ( -5) 4) ( - 5) * ( - 4)
Вычислите: 1) – 13 – 15 + 9 - 17 2) 20 – 14 – 13 + 7 3) ( -2) * ( -24,3) * ( -5) 4) ( - 5) * ( - 4) * 31 5) 0,25 * ( - 4) * ( - 8)
Pic.16
Путешествие на планету Математика, слайд 16
Pic.17
1)Упростите выражение 11а – 5а + 7а – 9а 2) Упростите выражение 10х – 4х + х – 6х + 5 и найдите его
1)Упростите выражение 11а – 5а + 7а – 9а 2) Упростите выражение 10х – 4х + х – 6х + 5 и найдите его значение при х = - 15.
Pic.18
Путешествие на планету Математика, слайд 18
Pic.19
Решите уравнение 15,7 + х = 12,3 9,7 – у = 12, 4 7,2 : а = - 1,2 2 z – 3 = -5
Решите уравнение 15,7 + х = 12,3 9,7 – у = 12, 4 7,2 : а = - 1,2 2 z – 3 = -5
Pic.20
Задание на дом № 1250 (г,д,е) № 1270 № 1274
Задание на дом № 1250 (г,д,е) № 1270 № 1274
Pic.21
Путешествие на планету Математика, слайд 21
Pic.22
Подготовила Хомкина Нина Николаевна, учитель математики, МБОУ «Алексеевская СОШ» Благовещенского рай
Подготовила Хомкина Нина Николаевна, учитель математики, МБОУ «Алексеевская СОШ» Благовещенского района Алтайского края Используемая литература: Учебник "Математика" 6 класс. Авт. : Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд «Дидактические материалы по математике» 6 класс. Авт. А. С. Чесноков Сборник задач и контрольных работ для 6 класса "Математика". Авт. : А. Г. Мерзляк, В. Б. Полонский, Е. М. Рабинович, М. С. Якир Математика. Предметная неделя в школе. Авт. : Г. Н. Григорьева, Н. А. Догадова, И. А. Зайцева


Скачать презентацию

Если вам понравился сайт и размещенные на нем материалы, пожалуйста, не забывайте поделиться этой страничкой в социальных сетях и с друзьями! Спасибо!