Слайды и текст доклада
Pic.1
Призма Многогранник, составленный из двух равных многоугольников A1A2…An и B1B2…Bn, расположенных в параллельных плоскостях, и n параллелограммов, называется призмой
Pic.2
Многоугольники A1A2…An и B1B2…Bn называются основаниями призмы, Многоугольники A1A2…An и B1B2…Bn называются основаниями призмы,
Pic.3
Боковые ребра призмы Отрезки A1B1, A2B2, … , AnBn называются боковыми ребрами призмы Боковые ребра призмы равны и параллельны
Pic.4
Призму с основаниями A1A2…An и B1B2…Bn обозначают A1A2…AnB1B2…Bn и называют n-угольной призмой Призму с основаниями A1A2…An и B1B2…Bn обозначают A1A2…AnB1B2…Bn и называют n-угольной призмой
Pic.5
Высота призмы Перпендикуляр, проведенный из какой-нибудь точки одного основания к плоскости другого основания, называется высотой призмы
Pic.6
Прямая и наклонная призмы Если боковые ребра призмы перпендикулярны к основаниям, то призма называется прямой, в противном случае – наклонной Высота прямой призмы равна её боковому ребру
Pic.7
Правильная призма Прямая призма называется правильной, если её основания – правильные многоугольники У правильной призмы все боковые грани – равные прямоугольники
Pic.9
Параллелепипед Если основания призмы - параллелограммы, то призма является параллелепипедом В параллелепипеде все грани являются параллелограммами
Pic.10
Диагонали призмы Диагональю призмы называется отрезок, соединяющий две вершины, не принадлежащие одной грани
Pic.11
Диагонали параллелепипеда Диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам
Pic.12
Диагональные сечения призмы Сечения призмы плоскостями, проходящими через два боковых ребра, не принадлежащих одной грани, называются диагональными сечениями Диагональные сечения призмы являются …
Pic.13
Диагональные сечения параллелепипеда
Pic.14
Площадь поверхности призмы Площадью полной поверхности призмы называется сумма площадей всех её граней Площадью боковой поверхности призмы называется сумма площадей её боковых граней
Pic.15
Теорема о площади боковой поверхности прямой призмы Теорема. Площадь боковой поверхности прямой призмы равна произведению периметра основания на высоту призмы
Pic.16
Доказательство теоремы Боковые грани прямой призмы – прямоугольники, основания которых – стороны основания призмы, а высоты равны высоте H призмы. Площадь боковой поверхности призмы равна сумме …
Скачать презентацию
Если вам понравился сайт и размещенные на нем материалы, пожалуйста, не забывайте поделиться этой страничкой в социальных сетях и с друзьями! Спасибо!