Построение линейных экономических моделей. Экономический анализ отчета по устойчивости

Смотреть слайды в полном размере
Презентация Построение линейных экономических моделей. Экономический анализ отчета по устойчивости

ПОСТРОЕНИЕ ЛИНЕЙНЫХ ЭКОНОМИЧЕСКИХ МОДЕЛЕЙ Экономический анализ отчета по устойчивости
Задача линейного программирования имеет следующий вид 1) Целевая функция Z= → экстремум (оптимум) 2) Ограничения [>≥=<≤] bj , где j=1,2,…,m 3) Требования к переменным xi≥0 (не отрицательность).
Основные определения Учет ресурсов, их расхода, выполнение плана и т. д. являются ограничениями
Основные определения Обеспечение максимально возможного дохода, либо минимум понесенных затрат принято называть целью задачи или ее критерием.
Основные определения Во всех таких задачах часто можно наблюдать так называемые «экономические ножницы», т. е. одни условия задачи достижимы при минимальном производстве, например, будут минимальны расходы, а другие, наоборот, – при максимальном (большой доход от большого количества произведенного продукта).
Основные определения Найти из этого множества только такое решение, которое обеспечит достижение желаемой цели. Такие задачи принято называть оптимизационными задачами в экономике.
Решение задач в Excel В настоящее время наиболее мощным средством решения таких задач на компьютере является пакет Excel с его надстройкой «Поиск решения».
Установка Поиска решения
Установка Поиска решения
Установка Поиска решения
Установка Поиска решения Офис Параметры Excell Надстройка / перейти Поиск решения / Ок Появится в закладке Данные
Все сведения о модели заносят в окно «Поиск решения»
По кнопке «Параметры» этого окна необходимо перейти в дополнительное окно, где обязательно следует отметить условие, что данная модель является линейной, и не отрицательности переменных
Отчёт по устойчивости Отчёт по устойчивости содержит информацию, насколько целевая ячейка чувствительна к изменениям ограничений и переменных. Формируется на отдельном листе книги Excel из диалогового окна «Результаты поиска решений», где в графе «Тип отчета» следует выбрать «Устойчивость».
Отчет по устойчивости Отчет по устойчивости состоит из двух частей. Первая об изменяемых ячейках, т. е. о тех переменных, которые обеспечивают необходимое значение целевой функции или являются определяемыми. Вторая – об ограничениях, введенных в условие решаемой задачи. Структура обеих частей одинакова и содержит по семь столбцов таблицы в каждой.
Нормированная стоимость Касается неизвестных плана. Это неудачный перевод с оригинала reduced cost, которую можно было перевести, как «цена, которая уменьшает (целевую функцию)». Это показатель, как изменится оптимальное значение ЦФ при выпуске продукции, которой нету в оптимальном плане. Например, если нормированная стоимость товара А была бы -3, то принудительный выпуск 2 единиц товара А, которых нету в оптимальном плане привел к уменьшению Дохода на 2•3=6 ед.
Теневая цена Касается ограничений, то есть, определенное значение указывает на «ценность» ограниченного ресурса в сравнении с другими ресурсами. Этот показатель указывает как изменится доход при изменении запасов ресурсов на 1 единицу. Например, пусть теневая цена ресурса 0,61, тогда если увеличить запас ресурса 3 на 10 единиц, то доход увеличится на 10•0,61=6,1 ед.
Пример построения линейных моделей Задача 1. На Вашем садовом участке есть возможность засеять 400м2 морковью и свеклой для продажи. Опыт прошлых лет показывает, что урожайность моркови составляет 4кг/м2, а свеклы – 5кг/м2. Для реализации своей продукции Вы решаете нанять продавца, который согласен принять от Вас не менее 80кг продукции. Как распределить имеющуюся площадь под эти культуры, чтобы обеспечить себе максимально возможный доход, если цена моркови – 6руб. , а свеклы – 5. 5руб. ?
Пример построения линейных моделей Задача 1. На Вашем садовом участке есть возможность засеять 400м2 морковью и свеклой для продажи. Опыт прошлых лет показывает, что урожайность моркови составляет 4кг/м2, а свеклы – 5кг/м2. Для реализации своей продукции Вы решаете нанять продавца, который согласен принять от Вас не менее 80кг продукции. Как распределить имеющуюся площадь под эти культуры, чтобы обеспечить себе максимально возможный доход, если цена моркови – 6руб. , а свеклы – 5. 5руб. ?
Пример построения линейных моделей Задача 1. На Вашем садовом участке есть возможность засеять 400м2 морковью и свеклой для продажи. Опыт прошлых лет показывает, что урожайность моркови составляет 4кг/м2, а свеклы – 5кг/м2. Для реализации своей продукции Вы решаете нанять продавца, который согласен принять от Вас не менее 1000кг продукции. Как распределить имеющуюся площадь под эти культуры, чтобы обеспечить себе максимально возможный доход, если цена моркови – 6руб. , а свеклы – 5. 5руб. ?
Пример построения линейных моделей Задача 1. На Вашем садовом участке есть возможность засеять 400м2 морковью и свеклой для продажи. Опыт прошлых лет показывает, что урожайность моркови составляет 4кг/м2, а свеклы – 5кг/м2. Для реализации своей продукции Вы решаете нанять продавца, который согласен принять от Вас не менее 1000кг продукции. Как распределить имеющуюся площадь под эти культуры, чтобы обеспечить себе максимально возможный доход, если цена моркови – 27руб. , а свеклы – 23. 5руб. ?
Построение модели Пусть X1 –площадь под морковью, а X2 – под свеклой.
Построение модели Пусть X1 –площадь под морковью, а X2 – под свеклой.
Построение модели Пусть X1 –площадь под морковью, а X2 – под свеклой.
Построение модели Пусть X1 –площадь под морковью, а X2 – под свеклой.
Модель задачи Найти Z=27*4X1+23. 5*5X2  max, при ограничениях X1>=0, X2>=0, X1+X2<=400, 4X1+5X2>=1000.
Ввод данных
Поиск решения
Результат вычислений
Отчет по устойчивости
Задача 2 Предположим, Вы решаете заняться бизнесом и шить для продажи наволочки и простыни. Пусть Вы сумели приобрести 800 м ткани, 10 катушек ниток по 200 м каждая и взяли в пункте проката швейную машинку сроком на 4 дня. На изготовление простыни необходимо 2 м ткани, 10 м ниток и 0,5 часа работы швейной машины. Для изготовления одной наволочки соответствующие показатели равны: 1,7 м, 9 м и 2/3 часа. Вы заключаете договор с магазином на реализацию не менее 50 своих изделий, но при соотношении количества наволочек и простыней как 2:1. Сколько Вам надо изготовить простыней и наволочек, чтобы уложиться в отведенные ресурсы и при этом иметь максимальную прибыль, если за каждую наволочку от магазина Вы получите 36 рублей, а за каждую простынь 44 рубля и при условии, что Ваш рабочий день составит 8 часов?
Задача 2 Предположим, Вы решаете заняться бизнесом и шить для продажи наволочки и простыни. Пусть Вы сумели приобрести 800 м ткани, 10 катушек ниток по 200 м каждая и взяли в пункте проката швейную машинку сроком на 4 дня. На изготовление простыни необходимо 2 м ткани, 10 м ниток и 0,5 часа работы швейной машины. Для изготовления одной наволочки соответствующие показатели равны: 1,7 м, 9 м и 2/3 часа. Вы заключаете договор с магазином на реализацию не менее 50 своих изделий, но при соотношении количества наволочек и простыней как 2:1. Сколько Вам надо изготовить простыней и наволочек, чтобы уложиться в отведенные ресурсы и при этом иметь максимальную прибыль, если за каждую наволочку от магазина Вы получите 36 рублей, а за каждую простынь 44 рубля и при условии, что Ваш рабочий день составит 8 часов?
Задача 2 Предположим, Вы решаете заняться бизнесом и шить для продажи наволочки и простыни. Пусть Вы сумели приобрести 800 м ткани, 10 катушек ниток по 200 м каждая и взяли в пункте проката швейную машинку сроком на 4 дня. На изготовление простыни необходимо 2 м ткани, 10 м ниток и 0,5 часа работы швейной машины. Для изготовления одной наволочки соответствующие показатели равны: 1,7 м, 9 м и 2/3 часа. Вы заключаете договор с магазином на реализацию не менее 50 своих изделий, но при соотношении количества наволочек и простыней как 2:1. Сколько Вам надо изготовить простыней и наволочек, чтобы уложиться в отведенные ресурсы и при этом иметь максимальную прибыль, если за каждую наволочку от магазина Вы получите 36 рублей, а за каждую простынь 44 рубля и при условии, что Ваш рабочий день составит 8 часов?
Задача 2 Предположим, Вы решаете заняться бизнесом и шить для продажи наволочки и простыни. Пусть Вы сумели приобрести 800 м ткани, 10 катушек ниток по 200 м каждая и взяли в пункте проката швейную машинку сроком на 4 дня. На изготовление простыни необходимо 2 м ткани, 10 м ниток и 0,5 часа работы швейной машины. Для изготовления одной наволочки соответствующие показатели равны: 1,7 м, 9 м и 2/3 часа. Вы заключаете договор с магазином на реализацию не менее 50 своих изделий, но при соотношении количества наволочек и простыней как 2:1. Сколько Вам надо изготовить простыней и наволочек, чтобы уложиться в отведенные ресурсы и при этом иметь максимальную прибыль, если за каждую наволочку от магазина Вы получите 36 рублей, а за каждую простынь 44 рубля и при условии, что Ваш рабочий день составит 8 часов?
Задача 2 Предположим, Вы решаете заняться бизнесом и шить для продажи наволочки и простыни. Пусть Вы сумели приобрести 800 м ткани, 10 катушек ниток по 200 м каждая и взяли в пункте проката швейную машинку сроком на 4 дня. На изготовление простыни необходимо 2 м ткани, 10 м ниток и 0,5 часа работы швейной машины. Для изготовления одной наволочки соответствующие показатели равны: 1,7 м, 9 м и 2/3 часа. Вы заключаете договор с магазином на реализацию не менее 50 своих изделий, но при соотношении количества наволочек и простыней как 2:1. Сколько Вам надо изготовить простыней и наволочек, чтобы уложиться в отведенные ресурсы и при этом иметь максимальную прибыль, если за каждую наволочку от магазина Вы получите 36 рублей, а за каждую простынь 44 рубля и при условии, что Ваш рабочий день составит 8 часов?
Построение модели Пусть Вы изготовите X1 наволочек и X2 простыней. Условие заключения договора с магазином можно записать в виде X1 + X2 >= 50 и Х1:Х2=2:1. Последняя запись не является линейной, но путем не сложных математических преобразований она легко превращается в линейную: 1∙Х1=2∙Х2 или Х1-2Х2=0. Определим общий расход ткани и соотнесем его с имеющимся запасом 1,7X1 + 2X2 <= 800. Аналогично по расходу ниток будет иметь место условие 9X1 + 10X2 <= 200*10. Поскольку рабочий день равен 8 часам, то ресурс швейной машины равен 8*4=32 часам. Расход времени работы этой машины составит 2/3X1 + 0. 5X2. Следовательно, имеем еще одно условие 2/3X1 + 0,5X2 <= 4*8. Ваш ожидаемый доход составит 36X1 + 44X2.
Построение модели Пусть Вы изготовите X1 наволочек и X2 простыней. Условие заключения договора с магазином можно записать в виде X1 + X2 >= 50 и Х1:Х2=2:1. Последняя запись не является линейной, но путем не сложных математических преобразований она легко превращается в линейную: 1∙Х1=2∙Х2 или Х1-2Х2=0. Определим общий расход ткани и соотнесем его с имеющимся запасом 1,7X1 + 2X2 <= 800. Аналогично по расходу ниток будет иметь место условие 9X1 + 10X2 <= 200*10. Поскольку рабочий день равен 8 часам, то ресурс швейной машины равен 8*4=32 часам. Расход времени работы этой машины составит 2/3X1 + 0. 5X2. Следовательно, имеем еще одно условие 2/3X1 + 0,5X2 <= 4*8. Ваш ожидаемый доход составит 36X1 + 44X2.
Построение модели Пусть Вы изготовите X1 наволочек и X2 простыней. Условие заключения договора с магазином можно записать в виде X1 + X2 >= 50 и Х1:Х2=2:1. Последняя запись не является линейной, но путем не сложных математических преобразований она легко превращается в линейную: 1∙Х1=2∙Х2 или Х1-2Х2=0. Определим общий расход ткани и соотнесем его с имеющимся запасом 1,7X1 + 2X2 <= 800. Аналогично по расходу ниток будет иметь место условие 9X1 + 10X2 <= 200*10. Поскольку рабочий день равен 8 часам, то ресурс швейной машины равен 8*4=32 часам. Расход времени работы этой машины составит 2/3X1 + 0. 5X2. Следовательно, имеем еще одно условие 2/3X1 + 0,5X2 <= 4*8. Ваш ожидаемый доход составит 36X1 + 44X2.
Построение модели Пусть Вы изготовите X1 наволочек и X2 простыней. Условие заключения договора с магазином можно записать в виде X1 + X2 >= 50 и Х1:Х2=2:1. Последняя запись не является линейной, но путем не сложных математических преобразований она легко превращается в линейную: 1∙Х1=2∙Х2 или Х1-2Х2=0. Определим общий расход ткани и соотнесем его с имеющимся запасом 1,7X1 + 2X2 <= 800. Аналогично по расходу ниток будет иметь место условие 9X1 + 10X2 <= 200*10. Поскольку рабочий день равен 8 часам, то ресурс швейной машины равен 8*4=32 часам. Расход времени работы этой машины составит 2/3X1 + 0. 5X2. Следовательно, имеем еще одно условие 2/3X1 + 0,5X2 <= 4*8. Ваш ожидаемый доход составит 36X1 + 44X2.
Построение модели Пусть Вы изготовите X1 наволочек и X2 простыней. Условие заключения договора с магазином можно записать в виде X1 + X2 >= 50 и Х1:Х2=2:1. Последняя запись не является линейной, но путем не сложных математических преобразований она легко превращается в линейную: 1∙Х1=2∙Х2 или Х1-2Х2=0. Определим общий расход ткани и соотнесем его с имеющимся запасом 1,7X1 + 2X2 <= 800. Аналогично по расходу ниток будет иметь место условие 9X1 + 10X2 <= 200*10. Поскольку рабочий день равен 8 часам, то ресурс швейной машины равен 8*4=32 часам. Расход времени работы этой машины составит 2/3X1 + 0. 5X2. Следовательно, имеем еще одно условие 2/3X1 + 0,5X2 <= 4*8. Ваш ожидаемый доход составит 36X1 + 44X2.
Построение модели Пусть Вы изготовите X1 наволочек и X2 простыней. Условие заключения договора с магазином можно записать в виде X1 + X2 >= 50 и Х1:Х2=2:1. Последняя запись не является линейной, но путем не сложных математических преобразований она легко превращается в линейную: 1∙Х1=2∙Х2 или Х1-2Х2=0. Определим общий расход ткани и соотнесем его с имеющимся запасом 1,7X1 + 2X2 <= 800. Аналогично по расходу ниток будет иметь место условие 9X1 + 10X2 <= 200*10. Поскольку рабочий день равен 8 часам, то ресурс швейной машины равен 8*4=32 часам. Расход времени работы этой машины составит 2/3X1 + 0. 5X2. Следовательно, имеем еще одно условие 2/3X1 + 0,5X2 <= 4*8. Ожидаемый доход составит 36X1 + 44X2.
Модель рассматриваемой задачи: Z = 36X1 + 44X2  max, при соблюдении условий X1 + X2 >= 50, Х1-2Х2=0 1,7X1 + 2X2 <= 800, 9X1 + 10X2 <= 200*10, 2/3X1 + 0. 5X2 <= 32.
Анализ: каждый дополнительный час работы принесет прибыль 68 рублей. Условие магазина о соотношении количества простыней и наволочек невыгодно, каждый раз при выполнении этого условия мы теряем почти 5 рублей. Вывод: для увеличения дохода необходимо увеличить время работы (например нанять еще одного работника и платить ему за каждый час не больше 68 рублей) и отказаться от требования магазина о соотношении 2:1
Анализ: каждый дополнительный час работы принесет прибыль 68 рублей. Условие магазина о соотношении количества простыней и наволочек невыгодно, каждый раз при выполнении этого условия мы теряем почти 5 рублей. Вывод: для увеличения дохода необходимо увеличить время работы (например нанять еще одного работника и платить ему за каждый час не больше 68 рублей) и отказаться от требования магазина о соотношении 2:1
Задача 3 Линейная бригада электриков обслуживает воздушные линии (ВЛ) 10 и 35 кВ. За обслуживание одного километра ВЛ 10 кВ она получает 270 руб. ; при этом расходует 0,5 ч на профилактику и 0,6 ч на устранение неисправностей. Аналогичные показатели при обслуживании одного километра ВЛ 35 кВ составляют: 320 руб. ; 0,8 и 1,2 ч. Частота возникновения неисправностей в месяц на одном километре ВЛ составляет 0,01 для ВЛ 10 кВ и 0,007 для ВЛ 35 кВ. В 10 % всех возникающих неисправностей требуется замена провода (0,2 км на каждую неисправность), запас которого составляет 10 км. Какова должна быть максимальная протяженность каждой ВЛ, обслуживаемой бригадой в течение месяца (8*24=192 часа), чтобы доход бригады был максимальным?
Задача 3 Линейная бригада электриков обслуживает воздушные линии (ВЛ) 10 и 35 кВ. За обслуживание одного километра ВЛ 10 кВ она получает 270 руб. ; при этом расходует 0,5 ч на профилактику и 0,6 ч на устранение неисправностей. Аналогичные показатели при обслуживании одного километра ВЛ 35 кВ составляют: 320 руб. ; 0,8 и 1,2 ч. Частота возникновения неисправностей в месяц на одном километре ВЛ составляет 0,01 для ВЛ 10 кВ и 0,007 для ВЛ 35 кВ. В 10 % всех возникающих неисправностей требуется замена провода (0,2 км на каждую неисправность), запас которого составляет 10 км. Какова должна быть максимальная протяженность каждой ВЛ, обслуживаемой бригадой в течение месяца (8*24=192 часа), чтобы доход бригады был максимальным?
Задача 3 Линейная бригада электриков обслуживает воздушные линии (ВЛ) 10 и 35 кВ. За обслуживание одного километра ВЛ 10 кВ она получает 270 руб. ; при этом расходует 0,5 ч на профилактику и 0,6 ч на устранение неисправностей. Аналогичные показатели при обслуживании одного километра ВЛ 35 кВ составляют: 320 руб. ; 0,8 и 1,2 ч. Частота возникновения неисправностей в месяц на одном километре ВЛ составляет 0,01 для ВЛ 10 кВ и 0,007 для ВЛ 35 кВ. В 10 % всех возникающих неисправностей требуется замена провода (0,2 км на каждую неисправность), запас которого составляет 10 км. Какова должна быть максимальная протяженность каждой ВЛ, обслуживаемой бригадой в течение месяца (8*24=192 часа), чтобы доход бригады был максимальным?
Задача 3 Линейная бригада электриков обслуживает воздушные линии (ВЛ) 10 и 35 кВ. За обслуживание одного километра ВЛ 10 кВ она получает 270 руб. ; при этом расходует 0,5 ч на профилактику и 0,6 ч на устранение неисправностей. Аналогичные показатели при обслуживании одного километра ВЛ 35 кВ составляют: 320 руб. ; 0,8 и 1,2 ч. Частота возникновения неисправностей в месяц на одном километре ВЛ составляет 0,01 для ВЛ 10 кВ и 0,007 для ВЛ 35 кВ. В 10 % всех возникающих неисправностей требуется замена провода (0,2 км на каждую неисправность), запас которого составляет 10 км. Какова должна быть максимальная протяженность каждой ВЛ, обслуживаемой бригадой в течение месяца (8*24=192 часа), чтобы доход бригады был максимальным?
Построение модели Пусть X1 – протяженность линии ВЛ 10 кВ и X2 – протяженность линии ВЛ 35 кВ Величина 0,01*X1 выражает количество неисправностей на всей линии 10 кВ. Величина 0,007*X2 есть количество неисправностей на линии 35 кВ. Время, затрачиваемое на устранение неисправностей на одной и другой линиях, то получим: 0,6*0,01X1 + 1,2*0,007X2.
Построение модели (2) Время на профилактические осмотры 0,5*X1 + 0,8*X2. Суммарное время, затрачиваемое бригадой на обслуживание обеих ВЛ: (0,6*0,01*X1 + 1,2*0,007*X2) + (0,5*X1 + 0,8*X2) = 0,506*X1 + 0,8084*X2. Очевидно, что затраченное время не должно превышать отпущенного, 0,506*X1 + 0,8084*X2 <= 192.
Построение модели (3) Рассмотрим теперь расход проволоки. 0,1*(0,01X1 + 0,007X2)*0,2 = 0,00002X1+0,000014X2. Соотнеся этот расход с имеющимся запасом провода, получим: 0,00002X1 + 0,000014X2 <= 10
Построение модели (4) Итак, окончательно имеем две взаимосвязи, образующие систему ограничений. 0,506X1 + 0,8084X2 <= 192, 0,00002X1 + 0,000014X2 <= 10. Переходим к построению целевой функции. Доход бригады, который она будет иметь за обслуживание ВЛ: 270X1 + 320X2 руб. Отсюда целевая функция Z= 270X1 + 320X2  max.
Построение модели (4) Итак, окончательно имеем две взаимосвязи, образующие систему ограничений. 0,506X1 + 0,8084X2 <= 192, 0,00002X1 + 0,000014X2 <= 10. Переходим к построению целевой функции. Доход бригады, который она будет иметь за обслуживание ВЛ: 270X1 + 320X2 руб. Отсюда целевая функция Z= 270X1 + 320X2  max.
Модель задачи X1  0 и X2  0 – условия не отрицательности неизвестных, которые вытекают из смысла принятых обозначений. 0,506X1 + 0,8084X2 <= 432 0,00002X1 + 0,000014X2 <= 10 – система линейных ограничений, выражающая связи между неизвестными величинами, расходом ресурсов и их запасами. Z = 270X1 + 320X2  max – линейная целевая функция, устанавливающая цель – получение максимального дохода за обслуживание ВЛ (воздушных линий)